简介
首页

数学九章 四库本

数学九章卷三上
关灯
护眼
字体:
上一章    回目录 下一章

宋 张九韶 撰田域

按此卷以方圆斜直幂积相求即方田少广勾股诸法而术中累乘累除错综变换与常法回然其本则出于立天元一法今择其难解者

以立天元一法明之皆不攻自破矣

古池推元

问有方中古圆池堙圮北余一角从外方隔斜至内圆边七尺六寸欲就古迹修之欲求圆方方斜各几何荅曰池圆径三丈六尺六寸四百二十九分寸之

四百一十二

方面三丈六尺六寸四百二十九分寸之四百一十二 方斜五丈一尺八寸四百二十九分寸之四百一十二

术曰以少广求之投胎术【按即益积之名】入之斜自乘倍之为实倍斜为益方以半寸为从隅开投胎平方得径又为方面以隅并之共为方斜

草曰以斜七十六寸自乘得五千七百七十六倍之得一万一千五百五十二寸为实倍斜七十六寸得一百五十二为益方【按有长方积先求长其长濶较名益方】以半寸为从隅开平方置实一万一千五百五十二于上益方一百五十二于中从隅五分于下于下起歩约得百

古池图       乃于实上商置三百寸方

再进为一万五千二百【按再

进者以百乘之也】隅五进为五千

【按隅五分以百再乗得五千】以商隅相

生得一万五千为正方以

消益方一万五千二百其

益方余二百以与商相生

得六百投入实得一万二

千一百五十二又商隅相

生又得正方一万五千内消负方二百讫余一万四千八百为从方【按倍正方减益方之数】一退为一千四百八十以隅再退为五十乃于上商之次续商置六十寸与隅相生増入正方得一千七百八十乃命续商除实讫实余一千四百七十四次以商生隅増又正方为二千八十方一退为二百八隅再退为五分乃于续商之次又商置六寸与隅相生増入正方为二百一十一乃命商除实讫实不尽二百六寸不开为分子乃以商生隅増入正方又并隅共得二百一十四寸五分为分母以分母分子求等得五分为等数皆以五分约其分母分子之数为四百二十九分寸之四百一千二通命之得池圆径及方面皆三丈六尺六寸四百二十九分寸之四百一十二又倍隅斜七尺六十得一丈五尺二寸并径三丈六尺六寸共得五丈一尺八寸四百二十九分寸之四百一十二为方斜

按此术以立天元一法明之法立天元一为池径即方边自之得一平方为方幂倍之得二平方为斜幂寄左次倍斜至歩加天元一得一百五十二寸多一元为方斜自之得二万三千一百零四寸多三百零四元多一平方亦为斜幂与左相消雨边各减一平方得二万三千一百零四寸多三百零四元与一平方等寸数为实元数为较或两边各半之得一万一千五百五十二寸多一百五十二元多半平方与一平方等寸数为实元数半方数共为较术中所用葢次数也然不如前数之便至开方法即有长方积有长濶軗带纵先求长之法也

尖田求积

问有两尖田一叚其尖长不等两大斜三十九歩两小斜二十五歩中广三十歩欲知其积几何

荅曰曰积八百四十歩

术曰以少广求之翻法入之置半广自乘为半幂与小斜幂相减相乘为小率以半幂与大斜幂相减相乘为大率以二率相减余自乘为实并二率倍之为从上亷以一为益隅开翻法三乘方得积【一位开尽者不用翻法】

草曰置广三十歩以半之得一十五自乘得二百二十五为半幂以小斜二十五歩自乘得六百二十五为小斜幂与半幂相减余四百与半幂二百二十五相乘得九万歩为小率置大斜三十九歩自乘得一千五百二十一为大斜幂与半幂二百二十五相减余一千二百九十六与半幂二百二十五相乘得二十九万一千六百为大率以小率九万减大率余二十万一千六百自乘得四百六亿四千二百五十六万为实以小率九万并大率二十九万一千六百得三十八万一千六百倍之得七十六万三千二百为从上亷【按从上亷平方和数也】以一为益隅开玲珑翻法三乘方歩法乃以从亷超一位益隅超三位约商得十今再超进乃商置百其从上亷为七十六亿三千二百万其益隅为一亿约实置商八百为定商以商生益隅得八亿为益下亷又以商生下亷得六十四亿为益上亷与从上亷七十六亿三千二百万相消从上亷余十二亿三千二百万又与商相生得九十八亿五千六百万为从方又与商相生得七百八十八亿四千八百万为正积与元实四百六亿四千二百五十六万相消正积余三百八十二亿五百四十四万为正实又以益隅一亿与商相生得八亿増入益下亷为一十六亿又以益下亷与商相生得一百二十八亿为益上亷乃以益上亷与从上亷一十二亿三千二百万相消余一百一十五亿六千八百万为益上亷又与商相生得九百二十五亿四千四百万为益方与从方九十八亿五千六百万相消益余八百二十六亿八千八百万为益方又以商生益隅一亿得八亿増入益下亷得二十四亿又以商相生得一百九十二亿入益上亷得三百七亿六千八百万为益上亷又以商生益隅一亿得八亿入益下亷得三十二亿毕其益方一退为八十二亿六千八百八十万益上亷再退得三亿七百六十八万益十亷三退得三百二十万益隅四退为一万毕乃约正实续置置四十歩与益隅一万相生得四万入益下亷为三百二十四万又与商相生得一千二百九十六万入益上亷内为三亿二千六十四万又与商相生得一十二亿八千二百五十六万入从方内为九十五亿五千一百三十六万乃命上续啇四十除实适尽所得八百四十歩为田积今列求率开方图于后按此术以立天元一法明之法立天元一为尖积即大小两三角积和自之得一平方为和自乘以半广幂减大斜幂与余积相乘得二十九万一千六百歩为大三角积自乘以坐广幂减小斜幂与余数相乘得九万歩为小三角积自乘二自乘数并而倍之内减去和自乘得七十六万三千二百歩少一平方为较自乘与和自乘再相乘得七十六万三千二百平方少一三乘方寄左次以大小两三角积相减余二十万零一千六百歩为和较相乘数自之得四百零六亿四千二百五十六万歩与左相等则后歩数为实前平方数为从上亷三乘方数即益隅与草中所取之数悉合又按此苦以小率九万歩开平方得三百歩即小三角积以大率二十九万一千六百歩开平方得五百四十歩即大三角积并之得八百四十歩即尖积其法甚易然必如此费算者殆欲用立天元一法不求分积即得所问之总积也

正负开三乘方图

术曰商常为正 实常为负 从常为正 益常

<子部,天文算法类,算书之属,数学九章,卷三上>

<子部,天文算法类,算书之属,数学九章,卷三上>

<子部,天文算法类,算书之属,数学九章,卷三上>

<子部,天文算法类,算书之属,数学九章,卷三上>

已上系开三乘方翻法图后篇效此

三斜求积

问沙田一叚有三斜其小斜一十三里中斜一十四里大斜一十五里里法三百歩欲知为田几何

荅曰田积三百一十五顷

术曰以少广求之以小斜幂并大斜幂减中斜幂余半之自乘于上以小斜幂乘大斜幂减上余四约之为实一为从隅开平方得积

草曰以斜一十三里自乘得一百六十九里为小斜幂以大斜一十五里自乘得二百二十五里为大斜幂并小斜幂得三百九十四里于上以中斜一十四里自乘得一百九十六里为中斜幂减上余一百九十八里以半之得九十九里自乘得九千八百一里于上以小斜幂一百六十九乘大斜幂二百二十五得三万八千二十五减上余二万八千二百二十四以四约之得七千五十六里为实以为一隅开平方以隅超歩为一百乃于实上商置八十以商生隅得八百为从方乃命上商除实余六百五十六又以商生隅入方得数退一位为一百六十隅退二位为一乃于实上续商四里生隅入从方内得一百六十四乃命续商除实适尽所得八十四里为田积其形长八十四广一里以里法三百歩自乘得九万歩乘八十四里得七百五十六万歩以亩法二百四十除之得三万一千五百畆又以顷法一百畆约之得三百一十五顷

按此术以立天元一法明之法立天元一为三角积倍之得二元自之得四平方为中长幂乘底幂以大斜为底寄之又以小斜幂与大斜幂相加内减中斜幂得一百九十八里半之得九十九里为小分底与底相乘长幂自之得九千八百零一里为小分底幂乘底幂之数又以小斜幂大斜幂相乘得三万八千零二十五里为小分底幂乘底幂中长幂乘底幂各一内减小分底幂乘底幂之数余二万八千二百二十四里为中长幂乘底幂之数与寄数等两边各以四约之得七千零五十六里与一平方等里数为实方数即从隅也从二题同此

斜荡求积

问有荡一所正北濶一十七里自南尖穿径中长二十四里东南斜二十里东北斜一十五里西斜二十六里欲知畆积几何

荅曰荡积一千九百一十一顷六十畆

术曰以少广求之置中长乘北濶半之为寄以中长幂减西斜幂余为实以一为隅开平方得数减北濶余自乘并中长幂共为内率以小斜幂并率减中斜

幂余半之自乘于上以

小斜幂乘率减上余四

约之为实以一为隅开

平方得数加寄共为荡

草曰以中长二十四里

乘北濶一十七里得四

百八乃半之得二百四里为寄以中长自乘得五百七十六为长幂以西斜二十六里自乘得六百七十六为大斜幂以减长幂余一百里为实开平方得一十里以减北濶数一十七里余七里自乘得四十九里并长幂五百七十六得六百二十五为内率次置东小斜一十五里自乘得二百二十五为小斜幂又置东南中斜二十里自乘得四百为中幂却以小斜幂并率得八百五十以减中幂四百余四百五十乃半之得二百二十五自乘得五万六百二十五里于上又以小斜幂二百二十五乘率六百二十五得一十四万六百二十五减上余九万里以四约得二万二千五百为实开平方得一百五十并寄二百四里得三百五十四里为泛以里法三百六十自乘得一十二万九千六百歩乘泛得四千五百八十七万八千四百歩以畆法二百四十歩约之得一千九百一十一顷六十畆为荡积

计地容民

问沙洲一叚形如棹力广一千九百二十歩从三十六百歩大斜二千五百歩小斜一千八百二十歩以安集民每户给一十五畆欲知地积容民几何

荅曰池积一百四十九顷九十五畆 容民九百

九十九戸 余地一十畆

术曰以少广求之置广乘长半之为寄以广幂并从幂为中幂【按实大斜幂】以小斜幂并中幂减大斜幂【按实中斜幂】余半之自乘于上以小斜幂弃中幂减上余以四约之为实以一为隅开平方得数加寄共为积以每户给数除积得容民戸数

草曰置广一千九百

二十歩乘从三千六

百歩得六百九十一

万二千歩乃半之得

三百四十五万六千

歩为寄以广自乘得三百六十八万六千四百歩为广幂又以从自乘得一千二百九十六万步为从幂并广幂得一千六百六十四万六千四百步为中幂次以小斜一千八百二十歩自乘得三百三十一万二千四百歩为小斜幂又以大斜二千五百歩自乘得六百二十五万歩为大斜幂却以小幂并中幂得一千九百九十五万八千八百歩以大斜幂减之余一千三百七十万八千八百歩乃半之得六百八十五万四千四百歩自乘得四十六万九千八百二十七亿九千九百三十六万歩于上次以小斜幂乘中幂得五十五万一千三百九十五亿三千五百三十六万歩减上余八万一千五百六十七亿三千六百万为实以四约之得二万三百九十一亿八千四百万为实以一为隅开平方得一十四万二千八百歩并寄三百四十五万六千歩共得三百五十九万八千八百歩以畆法二百四十歩除之得一万四千九百九十五畆次以顷法一百畆约之为一百四十九顷九十五畆为地积又为实以每户所给一十五畆为法除实得九百九十九户不尽一十畆不及一戸所给数以为余地一十畆

蕉田求积

问蕉叶田一叚中长五百七十六歩中广三十四歩不知其周求积畆合几何

荅曰田积四十五畆一角【按六十歩为一角葢四分畆之一也】十一歩六万三千七十分歩之五千二百一十三

术曰以长并广再自乗又十乘之为实半广半长各自乘所得相减余为从方一为从隅开平方半之得积

草曰以长五百七十六歩并广三十四歩得六百一十两度自乘【按即自乘再乘】得二亿二千六百九十八万一千歩进一位即是以十乘之得二十二亿六千九百八十一万歩定得此数以为实置长五百七十六以半之得二百八十八自乘得八万二千九百四十四于上又置广三十四歩以半之得一十七自乘得二百八十九减上余八万二千六百五十五为从方以一为从隅开平方得二万一千七百四十二歩不尽一万四百二十六歩以商生隅入方又并隅算共得一十二万六千一百四十为母与不尽及开方田积数皆半之田积定得一万八百七十一步六万三千七十分歩之五千二百一十三以畆法二百四十约之得四十五畆一角一十一歩六万三千七十分歩之五千二百一十三

按此术以长与广相加自乘再乘又以十乘之为长方积以半长自乘半广自乘相减为长濶较求得阔折半为田积非法也此题中广甚小故得数较古法多七百余较密法少二千七百余若设长为七百零七广为二百九十三亦以此法求之长广相加自之再之又十乘之得一百亿为实半长半广各自之相减得十万零三千五百为长阔较求得阔折半得三万零四百二十六歩余为田积依宻法求之实十四万四千九百余歩所差甚逺其术之不合显然矣葢数必三乘而后可以平方求之今再乘之后仅以十进之宜其不可用也

漂田堆积

问三斜田被水冲去一隅而成四不等直田之状元中斜一十六步如多长水直五歩如少濶残小斜一十三歩如残大斜二十歩如元中斜之横量径一十二歩如残田之广又如元中斜之勾亦是水直之股欲求元积残积水积元大斜元中斜二水斜各几何

荅曰元积一百三十八歩一十一分歩之八水积一十二歩一十一分歩一八【按应一十三歩一十一分歩之七】

残积一百二十六歩

元大斜二十九歩一十一分歩之一

元小斜一十八歩一十一分歩之一【按应一十一分歩之十】水大斜九歩一十一分歩之一

水小斜五歩一十一分歩之一【按应一十一分歩之一】

术曰以少广求之连枝入之又勾股入之置水直减中斜余为法以中斜乘大残为大斜实以法除实得元大残以残大斜减之余为水大斜以法乘径又自之为小斜隅以水直幂并径幂为幂又乘径幂又乘中斜幂为小斜实与隅可约约之闭连枝平方得元小斜以残小斜减之余为水小斜以水直乘之为水实倍水小母为法除之得水积【按此处法踈】以水直并中斜乘径为实以二为法除之得残积以残积并水积共为元积分者通之重有者重通之

草曰以水直五减中

斜一十六余一十一

为法以中斜一十六

乘大残二十得三百

二十为大斜实以法

除之得二十九歩一

十一分歩之一为元大斜内减残大斜二十歩余九歩一十一分歩之一为水大斜以法一十一乘径一十二【按乘径可省】得一百三十二自之得一万七十四百二十四为小斜隅以水直五自乘得二十五为水直幂以径一十二自之得一百四十四为径幂并水直幂得一百六十九为幂以乘径幂【按此乘径幂亦可省葢以此乘复以此除徒为多筭耳】一百四十四得二万四千三百三十六于上又以中斜一十六自乘得二百五十六为中斜幂以乘上得六百二十三万一十六为小斜实开平方与隅求等得一百四十四俱约之实得四万三千二百六十四隅得一百二十一开方不尽以连枝术入之用隅一百二十一乘实四万三千二百六十四得五百二十三万四千九百四十四为定实以一为定隅开平方得二千二百八十八为实以约隅一百二十一除之得一十八歩不尽一百一十一【按一百一十整】与法一百二十一俱以一十一约之得一十一分歩之十为元小斜减残小斜一十三歩余五歩一十一分歩之一【按十讹一故下数误】为水小斜通歩内子得五十六以水直五歩乘之得二百八十为水实倍水小母一十一得二十二为法除之得一十二歩不尽一十六与法俱以二约之为一十二歩一十一分歩之八【按应一十二歩一十一分步之七】水积置中斜一十六并水直五得二十一乗径一十二得二百五十二以半之得一百二十六为残积以水并积共得一百三十八歩一十一分歩之八为元积【按应一百三十九步一十一分步之七】

数学九章卷三上

<子部,天文算法类,算书之属,数学九章>

钦定四库全书

上一章    回目录 下一章
阅读记录 书签 书架 返回顶部